

LVS (R) Leistungstabelle

LVS (R) Produktpalette

Mod èles	LVS(R)1	LVS(R)2	LVS(R)3	LVS(R)4	LVS(R)5	LVS(R)10	LVS(R)15	LVR(S)20	LVS(R)32	LVS(R)45	LVS(R)64	LVS(R)90	LVS(R)120	LVS(R)150	LVS(R)200
Débit nominal (m³/h)	1	2	3	4	5	10	15	20	32	45	64	90	120	150	200
Plage de débit (m³/h)	0,7-2,4	1,0-3,5	1,2-4,5	1,5-8	2,5-8,5	5-13	8-23	10,5-29	15-40	22-58	30-85	45-120	60-150	80-180	100-240
Pression max (bar)	22	23	24	21	24	22	23	25	28	33	22	20	16	16	16
Puissance moteur (kW)	0,37-2,2	0,37-3	0,37-3	0,37-4	0,37-4	1,1-7,5	1,1-15	1,1-18,5	1,5-30	3-45	4-45	5,5-45	11-75	11-75	18,5-110
Rendement pompe max	45%	46%	55%	59%	60%	65%	70%	72%	78%	79%	80%	81%	74%	73%	79%
Raccord's LVR	Raccords LVR														
Bride ovale	1"	1"	1"	1"1/4	1"1/4	1000	1 (50)		1000	l said	19700	870	E 19700	j	1.
Bride DIN	DN25	DN25	DN25	DN32	DN32	DN40	DN50	DN50	DN65	DN80	DN100	DN100	DN125	DN125	DN150
Raccord's LVS	Raccords LVS														
Bride DIN	DN32	DN32	DN32	DN32	DN32	DN40	DN50	DN50	DN65	DN80	DN100	DN100	DN125	DN125	DN150
Raccord clamp	Ø42	Ø42	Ø42	Ø42	Ø42	10.50		11-31	(1 -)1	1.5	(-)	(37)	(.5%	15	1 :-
Raccord taraudé	1"1/4	1"1/4	1"1/4	1"1/4	1"1/4	1000	270	0.50	1270	1.50	0.50	8.732	0.50	1 10	1 12

Einfluss der Umgebungstemperatur

Eine Umgebungstemperatur von mehr als 40 ° C oder eine Installation in einer Höhe über 1000 Metern über dem Meeresspiegel erfordert einen übergroßen Motor. Aufgrund der geringen Luftdichte und der schlechten Kühlung nimmt die Ausgangsleistung P2 ab, wie in der folgenden Tabelle gezeigt:

Maximaler Pumpenbetriebsdruck

Die folgende Tabelle zeigt die maximalen Förderdrücke der verschiedenen LVS (R) -Pumpen. Der Saugdruck der Pumpe + der eingestellte Druck muss immer niedriger sein als der maximale Betriebsdruck der Pumpe. Wenn der maximale Betriebsdruck überschritten wird, können die Motorlager beschädigt und die Lebensdauer der Gleitringdichtung verkürzt werden.

Die Berechnung des NPSH wird in den folgenden Situationen dringend empfohlen:

- Die Flüssigkeitstemperatur ist hoch.
- Die Durchflussmenge ist viel höher als die Nenndurchflussmenge der Pumpe / li>
- hohe Saughöhe
- lange Länge des Saugrohrs
- Eigenschaften des Saugrohrs schlecht (niedriger DN, Bögen, ...)

Um Kavitation zu vermeiden, stellen Sie sicher, dass am Pumpensauger ein Mindestdruck vorhanden ist. Die maximale Saughöhe H kann wie folgt berechnet werden:

 $H = Pb \times 10,2 - NPSH^{R-Hf-Hv-Hs}$

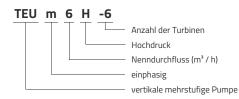
- Pb: Atmosphärendruck in bar (standardmäßig 1 bar verwenden)
 NPSH R: Erforderlicher positiver Nettosaugkopf (für diesen Wert siehe die angegebene Kurve unsere Pumpen)
- Hf: Druckabfall in der Rohrleitung (ausgedrückt in Metern)
- o Hv: Dampfdruck der Flüssigkeit (für diesen Wert siehe Spannungskurve von Flüssigkeitsdampf und seine Temperatur)
- Hs: Sicherheitsabstand (Standardwert 0,5 m)

Wenn H berechnet positiv ist, kann die Pumpe arbeiten mit einer Saughöhe von H Metern

Wenn H berechnet negativ ist, muss die Pumpe mit einer Höhe von H Metern

Application

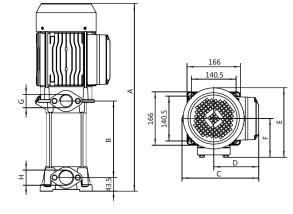
- Wasserversorgung für hohe Gebäude, Pumpstationen, Überdruck
- Waschstationen, Heizwasserkreislauf, Klimaanlage Wasserzirkulation, Wasseraufbereitungsanlagen
- Bewässerung: Streuen, drip
- Kontrollsysteme Feuer bekämpfen


Pompe

- \bullet Verwendung für einen weiten Bereich von Temperaturen, Durchflussraten und HMT
- Der Einlass und der Auslass können je nach Installationsanforderungen auf derselben oder gegenüberliegender Seite liegen.
- Vereinfachte Installation und Wartung
- Einlass und Auslass aus Gusseisen, korrosionsbeständig behandelt (Kataphorese)

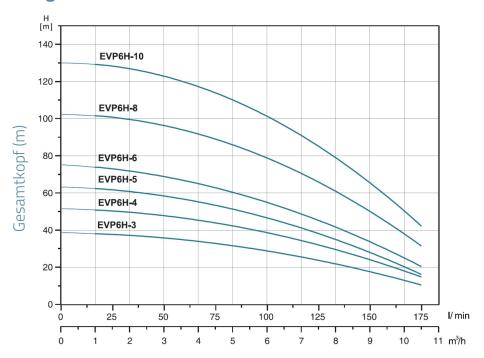
Moteur

- Flüssigkeitstemperatur: + 5 ° C bis + 60
- ° (
- Maximale Umgebungstemperatur: + 40 ° C Maximaler Druck: 15 bar

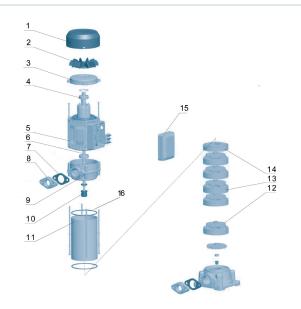

Identifikationscodes

Technische Daten

		Q (m³/h)	0	1	2	3	4.5	6	7.5	9	10.5
MODEL	kW	Q (I/min)	0	17	33	50	75	100	125	150	175
EVPm6H-3	1.1		39	38	37	35	33	29	24	18	10
EVP6H-3	1.1		39	38	37	35	33	29	24	18	10
EVPm6H-4	1.5		52	51	49	47	44	39	32	25	14
EVP6H-4	1.5		52	51	49	47	44	39	32	25	14
EVPm6H-5	1.8		65	62	60	58	54	47	38	28	16
EVP6H-5	1.8		65	62	60	58	54	47	38	28	16
EVP6H-6	2.2		76	74	71	68	63	56	45	34	20
EVP6H-8	3		103	100	97	95	90	80	66	50	31
EVP6H-10	4		130	127	124	121	114	103	86	66	41


Maße

MODEL	A	В	С	D	Е	F	G	Н
EVPm6H-3	457	158.5	210	125	202	114.5	11/4	1½
EVP6H-3	457	158.5	210	125	202	114.5	11/4	1½
EVPm6H-4	483.5	185	210	125	202	114.5	11/4	1½
EVP6H-4	483.5	185	210	125	202	114.5	11/4	1½
EVPm6H-5	510	211.5	210	125	202	114.5	11/4	1½
EVP6H-5	510	211.5	210	125	202	114.5	11/4	1½
EVP6H-6	536.5	238	210	125	202	114.5	11/4	1½
EVP6H-8	655	297.5	240	141	218	121.5	11/4	1½
EVP6H-10	708	350.5	240	141	218	121.5	11/4	1½



Hydraulische Leistung

Explosionszeichnung

No.	Туре	Materialien
1	Lüfterabdeckung	Stahl 08F
2	Ventilator	Polypropylen
3	hintere Lagerunterstützung des Motors	Gusseisen HT200
4	rollen	
5	Stator	
6	Rotor	
7	Dichtung	Nitrilkautschuk (NBR)
8	Flansch	Gusseisen HT200
9	obere Wasserbox	Aluminium
10	Gleitringdichtung	Kohlenstoff / Keramik
11	Hemd	Edelstahl AISI 304
12	Turbine	noryl (PPO)
13	Streamer	noryl (PPO)
14	Streamer	noryl (PPO)
15	Klemmenkastenabdeckung	PA6-Harz

Packaging

MODEL	Gewicht (kg)	Länge L (mm)	Breite W (mm)	Höhe H (mm)
EVPm6H-3	21.2	535	248	255
EVP6H-3	21.2	535	248	255
EVPm6H-4	22.9	560	248	255
EVP6H-4	22.9	560	248	255
EVPm6H-5	24.3	585	248	255
EVP6H-5	24.3	585	248	255
EVP6H-6	25.2	615	248	255
EVP6H-8	41.6	790	330	370
EVP6H-10	45.6	790	330	370